skip to main content


Search for: All records

Creators/Authors contains: "Montañez, Isabel P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Paleo-CO2 reconstructions are integral to understanding the evolution of Earth system processes and their interactions given that atmospheric-CO2 concentrations are intrinsically linked to planetary function. In this talk, we use several case studies, spanning the 3 Phanerozoic Eras, to illustrate the potential of paleo-CO2 records to constrain the magnitude and state-dependency of equilibrium climate sensitivity, to advance our understanding of global biogeochemical cycles, to test the sensitivity of Earth System modeled atmospheric and oceanic circulation to PCO2 over a range of climate states, and to interrogate ecosystem—CO2—climate linkages and physiological responses to CO2. Further advances in these areas, however, are dependent on how well we ‘know’ paleo-CO2 estimates. CO2 estimates exist for much of the past half-billion years, but the degree to which the accuracy and precision of these estimates are constrained is quite variable, leading to substantial uncertainty and inconsistency in paleo-CO2 estimates. Potential sources of this uncertainty and inconsistency include an incomplete understanding of how environmental and ecophysiological conditions and processes imprint the CO2 proxy signals we measure, of the sensitivity of the CO2 estimates to this uncertainty, and differences in approaches to assigning uncertainties to CO2 estimates, among other factors. Application of newly established screening criteria, defined as part of an effort to improve our understanding of how atmospheric CO2 has varied through the Cenozoic, illustrates how the majority of pre-Cenozoic estimates are unreliable in their current form. To address these issues and to advance paleo-CO2 reconstruction, we introduce CO2PIP, a new community-scale project that takes a two-step approach to building the next generation Phanerozoic-CO2 record. Collective efforts are modernizing existing terrestrial-based CO2 estimates through additional analyses, measurements and proxy system modeling to constrain critical parameters used to estimate paleo-CO2. A set of forward proxy system models being developed in collaboration with the CO2 community, will provide a quantified representation of proxy sensitivities to environmental and ecophysiological conditions and processes that govern the CO2 signals. Ultimately, statistical inversion analysis of the simulated and modernized proxy datasets will be used to revise individual CO2 records and to build a new integrated model-data-constrained CO2 record for the Phanerozoic. 
    more » « less
  2. In the southwestern United States, California (CA) is one of the most climatically sensitive regions given its low (≤250 mm/year) seasonal precipitation and its inherently variable hydroclimate, subject to large magnitude modulation. To reconstruct past climate change in CA, cave calcite deposits (stalagmites) have been utilized as an archive for environmentally sensitive proxies, such as stable isotope compositions (δ18O, δ13C) and trace element concentrations (e.g., Mg, Ba, Sr). Monitoring the cave and associated surface environments, the chemical evolution of cave drip-water, the calcite precipitated from the drip-water, and the response of these systems to seasonal variability in precipitation and temperature is imperative for interpreting stalagmite proxies. Here we present monitored drip-water and physical parameters at Lilburn Cave, Sequoia Kings Canyon National Park (Southern Sierra Nevada), CA, and measured trace element concentrations (Mg, Sr, Ba, Cu, Fe, Mn) and stable isotopic compositions (δ18O, δ2H) of drip-water and for calcite (δ18O) precipitated on glass substrates over a two-year period (November 2018 to February 2021) to better understand how chemical variability at this site is influenced by local and regional precipitation and temperature variability. Despite large variability in surface temperatures and precipitation amount and source region (North Pacific vs. subtropical Pacific), Lilburn Cave exhibits a constant cave environment year-round. At two of the three sites within the cave, drip-water δ18O and δ2H are influenced seasonally by evaporative enrichment. At a third collection site in the cave, the drip-water δ18O responds solely to precipitation δ18O variability. The Mg/Ca, Ba/Ca, and Sr/Ca ratios are seasonally responsive to prior calcite precipitation at all sites but minimally to water-rock interaction. Lastly, we examine the potential of trace metals (e.g., Mn2+and Cu2+as a geochemical proxy of recharge and find that variability in their concentrations has high potential to denote the onset of the rainy season in the study region. The drip-water composition is recorded in the calcite, demonstrating that stalagmites from Lilburn Cave, and potentially more regionally, could record seasonal variability in weather even during periods of substantially reduced rainfall.

     
    more » « less
  3. null (Ed.)
    Fjords are glacially carved estuaries that profoundly influence ice-sheet stability by draining and ablating ice. Although abundant on modern high-latitude continental shelves, fjord-network morphologies have never been identified in Earth’s pre-Cenozoic glacial epochs, hindering our ability to constrain ancient ice-sheet dynamics. We show that U-shaped valleys in northwestern Namibia cut during the late Paleozoic ice age (LPIA, ca. 300 Ma), Earth’s penultimate icehouse, represent intact fjord-network morphologies. This preserved glacial morphology and its sedimentary fill permit a reconstruction of paleo-ice thicknesses, glacial dynamics, and resulting glacio-isostatic adjustment. Glaciation in this region was initially characterized by an acme phase, which saw an extensive ice sheet (1.7 km thick) covering the region, followed by a waning phase characterized by 100-m-thick, topographically constrained outlet glaciers that shrank, leading to glacial demise. Our findings demonstrate that both a large ice sheet and highland glaciers existed over northwestern Namibia at different times during the LPIA. The fjords likely played a pivotal role in glacier dynamics and climate regulation, serving as hotspots for organic carbon sequestration. Aside from the present-day arid climate, northwestern Namibia exhibits a geomorphology virtually unchanged since the LPIA, permitting unique insight into this icehouse. 
    more » « less
  4. Piecing together the history of carbon (C) perturbation events throughout Earth’s history has provided key insights into how the Earth system responds to abrupt warming. Previous studies, however, focused on short-term warming events that were superimposed on longer-term greenhouse climate states. Here, we present an integrated proxy (C and uranium [U] isotopes and paleo CO 2 ) and multicomponent modeling approach to investigate an abrupt C perturbation and global warming event (∼304 Ma) that occurred during a paleo-glacial state. We report pronounced negative C and U isotopic excursions coincident with a doubling of atmospheric CO 2 partial pressure and a biodiversity nadir. The isotopic excursions can be linked to an injection of ∼9,000 Gt of organic matter–derived C over ∼300 kyr and to near 20% of areal extent of seafloor anoxia. Earth system modeling indicates that widespread anoxic conditions can be linked to enhanced thermocline stratification and increased nutrient fluxes during this global warming within an icehouse. 
    more » « less
  5. null (Ed.)
  6. The distribution of forest cover alters Earth surface mass and energy exchange and is controlled by physiology, which determines plant environmental limits. Ancient plant physiology, therefore, likely affected vegetation-climate feedbacks. We combine climate modeling and ecosystem-process modeling to simulate arboreal vegetation in the late Paleozoic ice age. Using GENESIS V3 global climate model simulations, varyingpCO2,pO2, and ice extent for the Pennsylvanian, and fossil-derived leaf C:N, maximum stomatal conductance, and specific conductivity for several major Carboniferous plant groups, we simulated global ecosystem processes at a 2° resolution withPaleo-BGC. Based on leaf water constraints, Pangaea could have supported widespread arboreal plant growth and forest cover. However, these models do not account for the impacts of freezing on plants. According to our interpretation, freezing would have affected plants in 59% of unglaciated land during peak glacial periods and 73% during interglacials, when more high-latitude land was unglaciated. Comparing forest cover, minimum temperatures, and paleo-locations of Pennsylvanian-aged plant fossils from the Paleobiology Database supports restriction of forest extent due to freezing. Many genera were limited to unglaciated land where temperatures remained above −4 °C. Freeze-intolerance of Pennsylvanian arboreal vegetation had the potential to alter surface runoff, silicate weathering, CO2levels, and climate forcing. As a bounding case, we assume total plant mortality at −4 °C and estimate that contracting forest cover increased net global surface runoff by up to 6.1%. Repeated freezing likely influenced freeze- and drought-tolerance evolution in lineages like the coniferophytes, which became increasingly dominant in the Permian and early Mesozoic.

     
    more » « less
  7. null (Ed.)